
3rd NASA Symposium on VLSI Design 1991

N94-13363
7.3.I

Verification of VLSI Designs

P. J. Windley

Department of Computer Science

University of Idaho

Moscow, ID 83843

m 208.885.6501

Abstract: In this paper we explore the specification and verification of VLSI

designs. The paper focuses on abstract specification and verification of func-

tionality using mathematical logic as opposed to low-level boolean equivalence

verification such as that done using BDDs and Model Checking. Specification

and verification, sometimes called formal methods, is one tool for increasing com-

puter dependability in the face of an exponentially increasing testing effort.

1 Introduction

Reliable computer systems are becoming increasingly difficult to engineer. The successes of

IC fabrication technology have put VLSI engineers in the position of building dependable

computers that are orders of magnitude more complex than the largest computers of even

a decade ago. With even larger numbers of transistors promised in the near term, research

is being done to make the reliable engineering of complex VLSI designs practical.

There are two complimentary approaches to computer reliability: fault tolerance and

fault exclusion. The former is most useful in handling dynamic faults occurring during

system operation due to component failure or other unexpected events. The latter is a

static process intended to remove errors in design and implementation before the computer

system is in service.

Testing and simulation are well-known fault exclusion techniques. Testing and simu-

lation are used extensively in the design, implementation, and manufacturing of computer

systems. The problem is that testing and simulation can never exhaustively cover every

possible situation that the circuit might encounter. Pygott [13] states

"A comparatively simple 8-bit microprocessor such as the Z80 has 208 internal

memory elements and 13 input signals, meaning that the circuit is capable of

2251 different state transitions. Even if a transition could be simulated every

microsecond, it would take 10 s3 years to examine all the possible changes (this

is far larger than the age of the universe)."

Clearly, only a tiny fraction of the possible state transitions can be tested. This situation

has led to VLSI devices going to market with design faults which were not caught in testing.

One possible answer to the inadequacies of testing and simulation is hardware syn-

thesis from high-level circuit descriptions written in an appropriate hardware description

language (HDL) such as VHDL [7]. Synthesis from an HDL description certainly has much

promise. Textual descriptions are easy to store, manipulate, and process. Also, synthesis

7.3.2

tools are likely to be reliable since the social process of hundreds of users using a synthesis

program tends to exorcise any latent bugs.

Unfortunately, synthesis of VHDL circuit descriptions is not sufficient for dependable

computing. As a case in point, consider that high-level programming languages have been

in use for 20 years and programs still contain numerous errors. There are a number of

reasons why this is so:

1. HDLs are generally verbose making them hard to read.

2. HDL constructs are not usually amenable to form_ anMysis. Thus it !s nearly

impossible to show that a particular description has desired properties.

3. Constructs that can be synthesized are frequently not abstract enough to be of use

as system specification__s-

4. Contrary to what the marketers of s_rnthesis systems wou!d have one believe, ciycu_t

descriptions outside of a small subset of a HDL cannot be synthesized. This is par-

ticularly true of abstract descriptions. One need not search further than a multiplier

...... find an examv!e of this:

Because of these limitations in testing, simulation, and synthesis, much effort is being

expended in the formal specjfi_c_ and_ verjfic_a=t_on 9_f hardware. Form=al meth0ds offer

hope of overcoming some of these shortcomings because they are based on logic and can

thus take advantage of the decades of mathematical research on using logical analysis.

1. Logical circuit descriptions are often more concise than conventional HDL descrip-

tions.

2. Numerous formalisms can be embedded in logic. This allows the circuit specifier to

use the most appropriate formalism for the job [10].

3. One can prove properties about logic descriptions directly using a proof system such

as predicate calculus. This can be very effective for establishing that a specificatipn

meets its requirements [17].

4. Analysis can............be applied to the specification_ and= less'abstract............. structurN circuit__ de-

scriptions to show functional correctness [2,9,16].

5. Logic provides behavioral, structural, data, and temporal abstra.ction mechanisms

for reducing the complexity of the description [12].
=

For these and other reasons, we believe that formal methods can play an important part

in increasing the reliability of computer sy§tems: : ::_

Note that we are not suggesting that form_ methods replace testing, simulation, and

synthesis, but rather that they complement these techniques. Figure 1 shows an idealized

ASIC design process (adapted from [11]). The RTL circuit dcscriptio_n_ _s wrjttcp in an

3rd NASA Symposium on VLSI Design 1991 7.3.3

Vt.P(t) AQ(t)

F Circuit ==_

Specification

switch...
case...

if...

1100001...

0011001...

1011001...

] l I I I

I l I I I 'l

l I I I J

_UUUWUU /

.Speci

I Verification

_ Circuit
Description

i

FSM IOptimization

Logic]Synthesis

Mapping >__

Place and

Route

Mask

Generation

l Manufacturing _

Simulation

Boolean

Equivalence

Timing

Verification

Simulation

Manufacturing

Testing

Figure 1: The ASIC Design Process.

7.3.4

appropriate HDL and subjected to synthesis and simulation. The specification is a more

abstract declarative description which is subject to formal analysis.

Having described the benefits of formal methods, there are a number of directions

that we could take. We could, for example, focus on how formal methods interacts with

conventional CAD tools or-discuss the pros and cons of the design process in Figure 1.

Instead, we will show how logic can be used to specify circuits and how proof functions as

a mathematical analysis tool for reasoning about those specifications. We do not attempt

to give a complete survey of the field, but rather focus on a demonstration of techniques.

2 Using Logic to Specify Hardware.

A circuit is a collection of devices composed by interconnection. Each of these devices

has ports which are used for input, output, or both. The behavior of a device can be

expressed in terms:O_:_ts ports. Each of tile devices in a circuit can, in turn, be viewed as a

composition of still other devices. This hierarchy of devices eventually leads to the devices

that the designer considers primitive. The smallest devices we will deal with in this paper

are logic gates and indeed, in many cases, we will stop much higher than even gates.

Clocksin describes several ways to specify circuit structure [3]:

• We can use imperative declarations of the circuit structure (this is referred to as the

extensional method).

• We can use functions to describe the output in terms of the input.

• We can use predicates in a quantified logic to relate the ports of a device using
behavioral or structural constraints. :

Each of these methods has advantages and disadvantages. The extensional method has

the advantage of being familiar to designers since it resembles imperative languages such

as Pascal that most designers have used. Most modern hardware descriptions languages

(e.g. VHDL) use the extensional method. The largest disadvantage of the extensional

method is that it is difficult to treat formally, just as imperative programming languages

are hard to treat formally.

The functional model is widely used; Hunt's specification of the FM8501 microproces,

sor, for example, is functional [6]. To specify the behavior of sequential circuits function-

ally, the specification language must support recursion. Hunt uses recursion to describe

the sequential Operation of his CPU._

In the functional model, circuit interconnection is given by the syntactic structure of

function application. This can cause several problems;

• Describing circuits with bi-directional ports is difficult since functional specifications

differentiate between {nput and output syntact[cally'

• The purpose of a structural specification is to show how components are connected

together. Since the only means of expressing connection is function application, even

returning a tuple is insumcient for describing circuits with more than one output.

3rd NASA Symposium on VLSI Design 1991 7.3.5

b

c

m

output

Figure 2: Implementation of a simple circuit, D

• Sequential circuits feedback on themselves. Recursion is the best alternative; but

that can be inadequate for circuits with multiple feedback paths.

The predicate method is a widely used specification technique [5] and is the one we will

demonstrate in this paper. A disadvantage of the predicate method is that designers are

likely to find it the most unfamiliar of the thi:ee and thus difficult to use. In addition, to use

the predicate method, the logic must support existential quantification, either explicitly

or implicitly. (Prolog is an example of a language with implicit existential quantification.)

The predicate method does, however lend itself to a wide variety of circuit types, including

those with multiple outputs and bi-directional ports.

2.1 Specifying Circuits with Predicates.

As an example of the predicate model, we will specify the behavior and structure of a very

simple circuit we call D. The predicate that specifies the behavior of the circuit can be

given by the following logic definition:

t F-deI D(a,b,c,d,out) = out = (a A b) V (c A d) I

Notice that the inputs and outputs are all included in the arguments and the behavior is

expressed as a constraint among the outputs and the inputs.

One possible implementation for D is shown in Figure 2. As was mentioned earlier,

each device can be thought of as representing a constraint on its inputs and outputs. For

example, the top And gate constrains a, b, and p in a manner consistent with the behavior

of the device.

I F-,ief And(a, b, p) = (p = a A b)

To get the constraint represented by the entire device, we can compose the individual

constraints using conjunction.

And(a, b, p) A And(c, d, q) A Or(p, q, out)

This expression constrains the values not only on the ports of the device, a, b, c, d, and

out, but also on the internal lines p and q. We normally wish to regard such a device as

a "blackbox" and consequently are only interested in the values of the external lines. We

can hide the internal lines using existentially quantified variables and define a predicate

D_imp that represents the structure of the circuit.

7.3.6

I Fde/D_imp(a. b, c, d, out) =3 p q. And(a, b, p) A And(c, d, q) A Or(p, q, out)

While this formula looks confusing at first, we should note that this level of specification

can be produced automatically from netlists or tradition_ HDL models.

For comparison, the following specification describes the same circuit using functions:

I _del D(a,b,c,d) = 0r(And(a,b),And(c,d))]

The outputs are not mentioned explicitly; the result of the function is taken to be the

output of the circuit.

Similarly, we can write a extensional specification of the circuit in a hardware descrip-

tion language such as VHDL [1]:

Entity D_imp is

port(a, b, c,

end D_imp;

d :in Bit; outp :out Bit);

architecture Structure of D_imp is

component ASDGate port(il,i2:in Bit; outp :out Bit);

component ORGate port(il,i2:in Bit; outp :out Bit);

signal p, q: Bit

GI: ANDGate port map

G2: ANDGate port map

G3: ORGate port map

(a, b, p);

(c, d, q);

(p, q, outp);

end Structure;

The difference between this specification and the predicate model of the circuit structure is

largely superficial. The primary difference is the abundance of keywords in the extensional

specification. The biggest impediment to using specification languages such as VHDL is

that they sometimes lack a clear semantics. This problem can be overcome by defining a

semantics of the :specification language in the object language of a verification tool such

as HOL. Van Tassel has done just that using VHDL and HOL in [14,15].

2.2 Specifying Sequential Behavior.

The last section specified a simple combliia{orial circuit. We specify the:behavior of se-

quential circuits in higher-order logic using an explicit representation of time.

For example, we can specify the behavior of a simple latch as follows:

IF&! latch in out set = V t. out (t+l) = set t -_ in t I out t I
! l

In the specification, in, out, and set are functions of time. The value of a signal at time

t is returned when the function representing the signal is applied to t. The specification

says that the value of out at time t + 1 gets the value of the input port, in, at time t if

3rd NASA Symposium on VLSI Design 1991 7.3.7

the set line is high and remains unchanged otherwise. Universal quantification over time

is used in defining the predicate.

We can also use existential quantification to describe temporal operators. For example,

suppose that we wish to define a predicate that says that a signal will eventually go high.

The following is a definition of an EVENTUALLY operator:

I[}-dd EVENTUALLY d 1;1 = 3 _2. *_2 > 1;1 A d t2 ,[

When applied to the signal d, and the current time, tl, the predicate states that there exists

a time, t2, in the future when the signal d will be true. The use of existential quantification

over time is also used to specify the behavior of asynchronous interconnections between

devices. Joyce [9] has shown how temporal logic can be embedded in higher-order logic.

2.3 Behavioral Abstraction and Specification.

There are many ways of specifying the same circuit. For example, in specifying a two input

binary decoder, one might write:

_d4 decodor_spoc sO sl o0 ol 02 03 =
(oO = (sl -, (sO -, F I F) I (sO F I T))) ^
(ol = (sl --_ (sO -+ F I F) I (sO --* T I F))) A

(02 = (sl --_ (sO -_ F I T) I (sO --_ F I F))) A

(03 = (sl -_ (sO -_ T I F) I (sO --* F I F)))

While this specification is correct, its meaning is not very clear.

Here is another specification for the same behavior:

5dd docoder_spec sO sl o0 ol 02 03 =
(o0 = _sl A _s0) A

(ol : _sl A sO) A
(02 = sl A _s0) A
(03 = sl A sO)

This specification closely models one possible implementation for the circuit; consequently,

using it as the behavioral specification would make the verification easier, but would not

tell us much about the abstract behavior of the decoder.

The next specification is more abstract and says more about the behavior of the decoder:

Fdd decoder_spec sO sl o0 ol 02 03 =
(o0 _ ((sl,s0) = (F,F))) A

(ol _ ((sl,s0) = (F,T))) A

(02 _ ((sl,s0) = (T,F))) A

(03 _ ((sl,sO) = (T,T)))

This specification clearly shows the binary numbers being represented by the inputs. More-

over, the specification does not suggest any particular implementation. In general, the more

abstract a specification, the easier it is to understand, but more difficult it is to verify.

We can make the above specification even more abstract by defining a function, pairv_l,

that converts boolean pairs into numbers and then writing the specification as follows.

7.3.8

decoder_spec sO sl oO ol 02 03 =

let n = pairval(st,s0) in

(oO (n = 0)) ^
(oi _ (n = i)) ^

(02 _ (n = 2)) A

(03 _ (n : 3))

This specification can be readily generalized to have n inputs and 2" outputs.

2.4 Specifying a Microprocessor

So far, the circuits we have described have been simple, for expository purposes. One

should not assume that all specifications must be of small devices. Indeed, logic is most

useful when used on large, abstract specifications. To demonstrate the use of formal

specification on a larger example, we will present the specification of a small microprocessor

called Tamarack.

There have been numerous efforts to verify microprocessors [4,8,6]. Most of these have

used the same implicit behavioral model. In general, the model uses a state transition

system to describe the microprocessor. A microprocessor specification has four important

parts:

1. A representation of the state, S. This representation varies depending on the verifi-

cation system being used.

,

.

A set ef state transition functions, J, denoting the behavior of the individual instruc-

tions of the microprocessor. Each of these functions takes the state defined in step

(1) as an argument and returns the state updated in some meaningful way.

A selection function, N, that selects a function from the set J according to the

current state.

4. A predicate, I, relating the state at time t + 1 to the state at time t by means of J
and N.

In some cases, the individual state transition functions, J, and the selection function, N,

are combined to form one large state transition function.

To make all of this mode concrete consider the top-level specification of Tamarack

presented by Joyce in [9].

ba,! TamarackBeh (ireq, mem, pc, acc, rtn, iack) =

Vt:timo.

(mem (t+l),pc (t+l),acc (t+l),rtn (t+l),iack (t+l)) =

NextState (iroq t,mem t,pc t,acc t,rtn t,iack t)

The top-level specification relates the state of the assembly language level registers at time

t + 1 to their state at time t using the function NoxtStato. The level of abstraction in the

3rd NASA Symposium on VLSI Design 1991 7.3.9

top-level specification is roughly that found in an assembly language reference manual.

The difference is that the formal specification is less ambiguous and more complete.

The next state function chooses among the many individual instructions according to

a selection criteria which describes, in an abstract way, instruction decoding:

bde! NextState (ireq, mem, pc, acc, rtn,

let opcval = OpcVal (mem,pc) in

((ireq A _iack) -_ IRq_SEM

(opcval = JZR_OPC) -_

(opcval = JMP_0PC) -_

(opcval = ADD_OPC) -_

(opcval : SUB_OPC) --_

(opera1 _ LDA_0PC) -_

(opcval _ STA_0PC) -_

(opcval : RFI_0PC) -_

lack) :

(mem,pc,acc,rtn,iack)

JZR_SEM (mem.pc,acc,rtn,iack)

JMP_SEM (mem,pc,acc,rtn,iack)

ADD_SEM (mem,pc,acc,rtn,iack)

SUB_SEM (mem,pc,acc,rtn,iack)

LDA_SEM (mem,pc,acc,rtn,iack)

STA_SEM (mem,pc,acc,rtn,iack)

RFI_SEM (mem,pc,acc,rtn,iack)

NOP_SEM (mem,pc,acc,rtn,iack))

Each of the instructions available to the programmer as well as actions that take place

on instruction boundaries such as interrupts are defined using a function on the state and

environment variables that returns a new state updated as appropriate for the instruction

being specified. We use the ADD instruction as an example:

_4e! ADD_SEM (mem:.memory,pc:*wordn,acc:*wordn,rtn:*wordn,iack:bool)

let inst = fetch (mem,(address pc)) in

let operand _ fetch (mem,(address inst)) in

(mem. inc pc, add(acc,operand), rtn, lack)

This instruction increments the program counter and stores the result of adding the accu-

mulator to the contents of memory pointed to by the current instruction in the accumulator.

No other state changes occur.

There are at least three kinds of abstraction taking place between the register transfer

level (RTL) description of Tamarack and the top-level specification given above.

1. Behavioral Abstraction -- The RTL description of Tamarack is a structural model

that says how the major blocks are connected. The top-level specification says

nothing about the structure of the microprocessors, but rather describes the required

behavior.

2. Data Abstraction -- The RTL description contains registers that are not of interest

in the top-level specification. A good example of these types of registers is the

instruction register which is vital to the correct functioning of the microprocessor,

but is not considered in the top-level specification.

3. Temporal Abstraction -- Events at the RTL level happen at a much finer time

granularity than events at the top-level. Events at the top-level are measured on a

time-scale that coincides with the execution of macro-level instructions. Events at

the RTL level are measured by the sub-cycle clock. Many RTL level events must

take place to cause one top-level event to happen.

7.3.10

3 Using Proof to Analyze Specifications

Proof can be used in at least two ways to analyze specifications. The first methods asks

the question Is my specification correct _. The second methods asks the question Does my

implementation meets the specification?

3.1 Design Verification

Determining whether or not a specification is correct is not a question that can be subjected

to exhaustive mathematical analysis since the design is an intellectual artifact, not a math-

ematical one. We can, however, determine whether a specification meets its requirements

to the extent that those requirements can be formulated in logic.

An example of this is the verification of two important properties of the supervisory

mode of a microprocessor called AVM-I [17]. AVM-1 has a supervisory mode that is

controlled by the supervisory mode bit in a register called the program status word (PSW).

When the processor is in supervisory mode, certain registers in the register file (which does

not include the PSW) become writable. Otherwise they can only be read.

One of the design requirements can be stated informally as follows:

Property 1 (Integrity of Privileged Registers) If the CPU is not in supervisory mode

and the nezt instruction is not an external or user-generated interrupt, then every privi-

leged register remains unchanged.

The integrity of the privileged registers is only important at the assembly language

programmer's level of the CPU. We do not care if the registers change on a finer time scale

so long as they remain the same when viewed by the outside world.

The formalization of this requirement is not difficult. The following expression captures
the essence of the problem:

V n . (IS_SUP_REG n)

(EL n (_acro_reg (_+I)) =

(EL n (macro_reg t)))))

The expression states that the register file (represented by a list) is the same for every

supervisory mode register at time t + 1 as it was at time t. 1

The basic requirement, stated above, must follow from the definition of the top-level

of AVM-I (AVM_Beh) and is subject to the following conditions:

1. The CPU is not currently in supervisory mode (expressed as -_get_sm (psw t)).

2. The next instruction is not an internal or external interrupt (expressed in the speci-

fication as -_(0pcodo ...= IIqT_0PC0DE) and -_({3pcode ...= EINT_0PCODE).

tEL selects the n th member of a llst.

3rd NASA Symposium on VLSI Design 1991 7.3.11

AVM_Beh

(A t. (reg_list t,psw t,pc t,mem t,ivec t))

(A t. (ireq_e t))

(V t.

_get_sm (psw t) A

_(Opcode (reg_list t,pse t,p¢ t,mem t,ivec t)

(ireq_e t) = INT_OPCODE) A

_(Opcode (reg_list t,ps. t,pc t,m.m t,ivec t)

(ireq_e t) = EINT_OPCODE)

(Vn. IS_SUP_REG n

(EL n(reg_list(t + I)) = EL n(reg_list t))))

This theorem is not difficult to establish and, when combined with a correctness proof (see

Section 3.2), gives confidence that the supervisory mode works as it should.

3.2 Functional Verification

A second, and complimentary, use of proof is in showing that our specification is correctly

implemented by the structure that we have chosen for the RTL model.

A simple example is given by the circuit D specified in Section 2.1. To show that the

implementation (represented by D_imp) meets its specification (represented by D), we prove

the following theorem:

V a b c d out . D_imp(a,b,c,d,out) _ D(a.b,c,d,out)]

]

This theorem could be proven using any number of techniques. Indeed, while it is a simple

example, it has little to do with the kinds of proofs of correctness that occur most frequently

or that are the most interesting.

A more interesting example is given in the proof of correctness of Tamarack [9] since

the proof involves behavioral, data, and temporal abstraction. We have already seen the

specification of the top-level of Tamarack (see Section 2.4). The RTL model is a fairly

large, but conventional description of the large grain structure of the microprocessor.

In order to understand the correctness theorem, we must describe the temporal abstrac-

tion that takes place between the RTL model and the top-level behavioral description. As

we have already mentioned, different levels in the specification have different views of time.

We use temporal abstraction to produce a function that maps time at one level to time at

another. Figure 3 shows a temporal abstraction function Y. The circles represent clock

ticks. Note that the number of clock ticks required at the bottom-level to produce one

clock tick at the top-level is irregular.

The predicate, _, is true whenever there is a valid abstraction from the lower level

to the upper level. We can define a generic temporal abstraction function in terms of _.

In a microprocessor specification, _ is usually a predicate indicating when the lower level

machine is at the beginning of its cycle---a condition that is easy to test.

7.3.12

tl t2 t3 t4 t 5

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

t_ t_ t_ t_ t_ t_ t_ t_, t_ t_o

G:T F F F T F T T F T

Figure 3: The function Y, which maps time at one level to another, can

be defined in terms of a predicate, _, which is true only when

the mapping occurs.

We will use a function Time0f as our temporal abstraction function. The function is

defined recursively so that (Timo0f g 0) is the first time that the predicate g is true and

(Time0f g (n+l)) is the next time after time n when g is true. We will not develop the

details of the temporal abstraction function here, but refer the interested reader to [9].

The final correctness theorem for Tamarack states that the behavioral model (defined

by TamarackBoh) follows from a system (AsynSystem) composed of the RTL model and

an asynchronous memory subsystem.

F lsynSystem (idxeq,mpc,mar,pc,acc,ir,rtn,arg,buf,idack,dack,mem) A

((va14 o mpc) 0 = O)
=¢.

let f = TimeOf ((((val4 rep) o mpc) Eq O) and (not dack)) in

TamarackBeh (idreq o f,mem o f,pc o f,acc o f,rtn o f,idack o f)

The function f is the function .T" of Figure 3. We also have a reset condition that requires

that the value of the microprogram counter, mpc, be 0 at time 0.

Presenting the proof of the correctness theorem for Tamarack is beyond the scope of this

paper. The proof is actually quite straightforward in most cases, involving standard proof

techniques such as substitution, case analysis, and induction. Indeed, much of the difficulty

is caused by the size of the proof effort rather than the puzzling nature of the theorems.

Tamarack is, of course, far from being the largest device with a verified correctness. Recent

research has developed techniques for managing much of the complexity of proofs of this

sort [16]. The techniques are demonstrated in the proof of correctness of AVM-1 .

One should not, of course, accept that the microprocessor is correct simply because

there is a theorem. The idea is that proof constitutes engineering analysis and like an

engineering analysis, must be documented and subject to review. What we }lave presented

here is not, of course, an engineering analysis.

3rd NASA Symposium on VLSI Design 1991 7.3.13

4 Conclusions

This paper has shown how logic can be used to specify and analyze hardware designs. The

use of formal methods has a number of advantages.

• Specifications give a clear and precise statement of the intended behavior of a design.

• Specifications can be analyzed to determine whether or not they meet the require-

ments of the design.

• Functional correctness can be demonstrated through analysis rather than testing.

• Assumptions are made explicit.

We do not suggest that formal methods replace conventional engineering practices,

but augment them. Work is continuing to bring tools based on formal methods into the

designers toolbox:

• We are developing new high-level models of common hardware devices which guide

the specification and verification of those devices.

• We are writing translators between hardware description languages used by conven-
tional CAD tools and verification tools.

• We are doing case studies to serve as examples of specification and verification.

These efforts, and similar efforts at other institutions promise to make formal methods

tractable for large-scale use in VLSI design.

References

[1] J. R. Armstrong. Chip-Level Modeling with VtIDL. Prentice Hall, 1989.

[2] A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher order

logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct Circuit

Designs. Elsevier Scientific Publishers, 1987.

[3] W. F. Clocksin. Logic programming and digital circuit analysis. The Journal o] Logic

Programming, 4:59-82, 1987.

[4] A. Cohn. Correctness properties of the VIPER block model: The second level. Tech-

nical Report 134, University of Cambridge Computer Laboratory, May 1988.

[5] M. J. Gordon. Why higher-order logic is a good formalism for specifying and verifying

hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal Aspects of VLSI

Design, pages 153-177. Elsevier Scientific Publishers, 1986.

7.3.14

[61

[7]

[sl

[91

[lO]

[11]

[12]

[13]

[14]

W. A. Hunt. The mechanical verification of a microprocessor design. In D. Borrione,

editor, From HDL Descriptions to Guaranteed Correct Circuit Designs. Elsevier Sci-

entific Publishers, 1987.

IEEE Std 1076-1987. IEEB Standard VHDL Language Reference Manual, 1987.

J. 3. Joyce. Formal verification and implementation of a microprocessor. In

G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification, Verification, and

Synthesis. Kluwer Academic Press, 1988.

J. J. 3oyce. Multi-Level Verification of Microprocessor-Based Systems. PhD thesis,

Cambridge University, December 1980.

J. J. Joyce. More reasons why higher-order logic is a good formalism for specifying

and verifying hardware. In Proceedings of the A CM/SIGDA International Workshop

in Formal Methods in VLSI Design, January 1991.

K. Keutzer. Panel discussion: Model checking, theorem proving, and CAD. In

A CM/SIGDA International Workshop in Formal Methods in VLSI Design, January

1991.

T. Melham. Abstraction mechanisms for hardware verification. In G. Birtwhlstle and

P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis. Kluwer

Academic Publishers, 1988.

C. Pygott. Noden_HDL: an engineering approach to hardware verification. In

G. Milne, editor, The fusion of Hardware Design and Verification. Elsevier Science

Publ. B.V.IFIP, 1988.

J. P. V. Tassel. The semantics of VHDL with VAL and HOL: Towards practical

verification tools. Master's thesis, Department of Computer Science and Engineering,

Wright State University, 1989.

[15]J. P. V. Tassel and D. Hemmendinger. Toward formal verification of VHDL speci-

fications. In L. Claesen, editor, Applied Formal Methods for Correct VLSI Design,

Leuven, Belgium, November 1989. Elsevier Science Publishers.

[16] P. J. Windley. The Formal Verification of Generic Interpreters. PhD thesis, Univer-

sity of California, Davis, Division of Computer Science, June 1990.

[17] P. J. Windley. Using correctness results to verify behavioral properties of micropro-

cessors. In Proceedings of the IEEE Computer Assurance Conference, June 1991.

